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This paper presents a linear stability analysis of plane Couette flow of a granular
material using a kinetic-theory-based model for the rheology of the medium. The
stability analysis, restricted to two-dimensional disturbances, is carried out for three
illustrative sets of grain and wall properties which correspond to the walls being
perfectly adiabatic, and sources and sinks of fluctuational energy. When the walls are
not adiabatic and the Couette gap H is sufficiently large, the base state of steady
fully developed flow consists of a slowly deforming ‘plug’ layer where the bulk density
is close to that of maximum packing and a rapidly shearing layer where the bulk
density is considerably lower. The plug is adjacent to the wall when the latter acts
as a sink of energy and is centred at the symmetry axis when it acts as a source of
energy. For each set of properties, stability is determined for a range of H and the
mean solids fraction ν. For a given value of ν, the flow is stable if H is sufficiently
small; as H increases it is susceptible to instabilities in the form of cross-stream
layering waves with no variation in the flow direction, and stationary and travelling
waves with variation in the flow and gradient directions. The layering instability
prevails over a substantial range of H and ν for all sets of wall properties. However,
it grows far slower than the strong stationary and travelling wave instabilities which
become active at larger H . When the walls act as energy sinks, the strong travelling
wave instability is absent altogether, and instead there are relatively slow growing
long-wave instabilities. For the case of adiabatic walls there is another stationary
instability for dilute flows when the grain collisions are quasi-elastic; these modes
become stable when grain collisions are perfectly elastic or very inelastic. Instability
of all modes is driven by the inelasticity of grain collisions.

1. Introduction
In recent years, observations in experiments and computer simulations of particle

segregation, cluster formation and fluctuations in the stress (Hopkins & Louge 1991;
Savage 1992a; Goldhirsch, Tan & Zanetti 1993; Miller, O’Hern & Behringer 1996)
of granular flows have motivated analyses of their stability. The formation of inho-
mogeneities and clusters is an issue of fundamental importance since it has direct
consequences on the rheology of the granular medium. It is, therefore, of interest to
determine whether the phenomena of clustering and stress fluctuations are a con-
sequence of instabilities arising in flows and whether they can be explained by the
continuum equations of motion.

† Current address: Department of Applied Maths and Engineering Sciences, University of
California, San Diego, La Jolla, CA 92093, USA.
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In a recent paper, Wang, Jackson & Sundaresan (1996) reported a linear stability
analysis of rapid granular shear flow, using a kinetic-theory-based model for the
rheology of the medium. They laid to rest some speculations and discrepancies in
some earlier studies on the stability of an unbounded uniformly shearing granular
medium (Savage 1992b; Babić 1993; Schmid & Kytömaa 1994) and proceeded to
analyse the stability of a granular material bounded between two impenetrable
parallel plates moving relative to each other at a constant speed. They give results for
three representative sets of wall properties that correspond to the flux of fluctuational
energy from the boundary into the shearing material being exactly zero, positive
and negative, i.e. the walls being adiabatic, sources of fluctuational energy and sinks
of fluctuational energy, respectively. However, they report that the properties of
the walls have little bearing on the nature of instabilities and remark that particle
segregation patterns “appear to be remarkably insensitive to the physical properties
of the particles and the bounding wall”.

This paper also addresses the stability of plane Couette flow of a granular material.
Our results indicate that the base states of steady fully developed flow computed by
Wang et al. (1996) are incorrect when the Couette gap is sufficiently large. The only
case for which the base states are given in their paper is when the plates are 89 particle
diameters apart and the mean solids fraction is 0.35 (their figure 2); the velocity pro-
files for two sets of wall properties show only minor deviations from the linear profile,
and there is little density variation across the gap. In contrast, our solutions for the
same parameter set show profound deviations from the linear velocity profile and the
presence of dense non-deforming zones when the walls act as sources or sinks of fluctu-
ational energy. Therefore, it appears that the stability results of Wang et al. are based
on incorrect computation of the base-state profiles when the walls are non-adiabatic.

In this paper, we show that the nature of instabilities in plane Couette flow of
a granular material is more complex than what was reported by Wang et al. We
observe that the properties of the walls exert considerable influence on the nature of
instabilities and on the critical Couette gap for the onset of instability. We show the
existence of travelling wave instabilities of the kind observed in the simulations of
Hopkins & Louge (1991) and a stationary instability in dilute flows for the case of
adiabatic walls, neither of which has been reported earlier.

Since the base state contains dense slowly deforming regions, it would have been
appropriate to include the frictional stress arising from abiding grain contacts. This
was done in our recent analysis of the stability of unbounded shear of a granular
medium (Alam & Nott 1997) using the frictional-kinetic model for the rheology.
However, this model has proved problematical when applied to the bounded shear flow
of the present study. When there is a dense plug in the flow field, the shear rate within
the plug becomes very small; since the frictional stress is indeterminate at zero shear
rate, numerical solution was not possible. This difficulty may perhaps be overcome by
assuming the existence of a non-deforming plug (within which only the frictional stress
acts), with deformation occurring only in a shear layer, as in the work of Mohan, Nott
& Rao (1997). We do not address this issue in the present study and consider a purely
kinetic stress, therefore making the study valid only for the regime of rapid shear.

2. Governing equations and constitutive relations
We consider a granular material bounded by two solid plane walls at ỹ = −H̃/2

and ỹ = H̃/2. The upper wall moves with a velocity Uw/2 in the x̃-direction and the
lower wall moves with the same speed in the opposite direction. The granular material
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consists of grains of diameter dp and mass density ρp. The velocity components are ũ
and ṽ in the x̃- and ỹ-directions respectively, the solids fraction (volume fraction of
solids) is denoted by ν and the grain temperature by T̃ .

The equations of motion in the absence of gravity are

ρp
Dν

Dt̃
= −ρpν(∇̃ · ũ), (2.1)

ρpν
Dũ

Dt̃
= −∇̃ · Σ̃, (2.2)

3
2
ρpν

DT̃

Dt̃
= −∇̃ · q̃ − Σ̃: ∇̃ũ− D̃. (2.3)

Here D/Dt̃ is the usual material derivative and Σ̃ is the stress tensor. The last of
the above equations is a balance for the fluctuational, or ‘pseudo-thermal’, kinetic
energy; here, q̃ is the energy flux, Σ̃: ∇̃ũ the production due to shear work, and D̃
the dissipation due to inelastic collisions. This balance is required as the transport
properties of the granular material depend on the grain temperature T̃ .

As indicated earlier, we choose a constitutive model for the stress, energy flux
and dissipation rate that is appropriate for rapid granular flow. Kinetic-theory-based
models for a system of smooth identical inelastic spheres have been derived by Jenkins
& Savage (1983), Lun et al. (1984), Jenkins & Richman (1985) and subsequently
elaborated in a few other studies. Jenkins & Savage (1983) presented the simplest
analysis by assuming the singlet velocity distribution to be Maxwellian, but their
analysis has the desirable feature of accounting for the anisotropy in the distribution
of collisions. More systematic derivations, with the velocity distribution perturbed
from the Maxwellian, were presented by Lun et al. (1984) and Jenkins & Richman
(1985); though their methods were different, the constitutive relations given in these
two studies are identical. Later, Jenkins & Richman (1988) determined the anisotropy
in the second moment of velocity fluctuations of smooth inelastic circular disks for
the particular case of uniform shear; their analysis shows significant normal stress
differences for dilute flows, but none in the dense limit. This anisotropy has been
shown to arise only in the Burnett-order corrections to the constitutive relations in
the recent work of Sela & Goldhirsch (1998).

We use the constitutive relations of Lun et al. in this work as they have been
widely used in the analysis of rapid granular flows. Moreover, any systematic analysis
that stops at terms linear in spatial gradients of the hydrodynamic variables in the
perturbation to the velocity distribution function will yield the same constitutive
relations (Jenkins & Richman 1988; Sela & Goldhirsch 1998). Hence our analysis is
of general import and in no way specific to a particular constitutive model. We do not
probe the consequence of anisotropy on stability, for reasons given in the concluding
section. We shall demonstrate that the primary features of the constitutive model that
determine stability are the dissipative nature of grain collisions, the compressibility of
the medium, and the dependence of the transport properties on the grain temperature
T . These features are common to all models for rapid granular flows. A point to
bear in mind is that all analyses based on kinetic theory assume instantaneous binary
collisions and invoke the assumption of molecular chaos. These assumptions are
unlikely to hold at high densities, and hence the constitutive model we use is not
expected to be valid at solids fractions close to that of maximum packing. We shall
nevertheless present results for all densities in this paper for the sake of completeness.
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Table 1. Non-dimensional functions

The constitutive expressions of Lun et al. (1984) are

Σ̃ = ρp

(
f1(ν) T̃ − dp f3(ν) T̃

1/2∇̃ · ũ
)
I − 2 ρp dp f2(ν) T̃

1/2
S , (2.4)

q̃ = − ρp dp f4(ν) T̃
1/2∇̃T̃ − ρp dp f4h(ν) T̃

3/2 ∇̃ν, (2.5)

D̃ =
ρp

dp
f5(ν) T̃

3/2
, (2.6)

where

S = 1
2

(∇̃ũ+ ∇̃ũT )− 1
3

(∇̃ · ũ) I ,
and I is the identity tensor. The non-dimensional functions of the solids fraction, f1

to f5 are listed in table 1. Since the analysis of Lun et al. is strictly valid only for
small grain inelasticity, the parameter η must be set to unity in the functions f1 to
f4h. Wang et al. (1996) used the forms given in table 1 and we retain them to aid
comparison with their work; the error incurred in doing so is of order (1 − η) and
will therefore have little effect on the qualitative nature of the solutions. The factor
(2 + α)/3 in f2(ν) was not present in the original expression of Lun et al. but was
introduced later by Johnson & Jackson (1987) (and retained by Wang et al.) to reflect
the anisotropy of collision distribution. As in these studies, we have set α to 1.6. For
the equilibrium radial distribution function at contact, g(ν), we use the form

g(ν) =
1

1− (ν/νmax)1/3
(2.7)

which ensures that g →∞ when ν → νmax and hence constrains the solids fraction to
remain less than the maximum packing limit νmax, which is taken to be 0.65.

Using the wall-to-wall gap H̃ as the length scale, the velocity difference between
the walls Uw as the velocity scale and the inverse of the nominal shear rate H̃/Uw as
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the time scale, we introduce the following non-dimensional variables:

(x, y) =
1

H̃
(x̃, ỹ), t =

Uw

H̃
t̃,

(u, v) =
1

Uw

(ũ, ṽ), T =
T̃

(dp/H̃)2U2
w

Σ =
Σ̃

ρpUw
2(dp/H̃)2

, q =
q̃

ρpUw
3(dp/H̃)4

,

D =
D̃

ρpUw
3(dp/H̃)3/dp

.


(2.8)

The non-dimensional equations of motion in terms of dynamical variables ν, u, v,
and T are then

∂ν

∂t
+

∂

∂x
(νu) +

∂

∂y
(νv) = 0, (2.9)

ν

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]
= − 1

H2

∂p

∂x
+

1

H2

∂

∂x

[
2µ
∂u

∂x
+ λ(∇ · u)

]
+

1

H2

∂

∂y

[
µ

(
∂u

∂y
+
∂v

∂x

)]
, (2.10)

ν

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

]
= − 1

H2

∂p

∂y
+

1

H2

∂

∂y

[
2µ
∂v

∂y
+ λ(∇ · u)

]
+

1

H2

∂

∂x

[
µ

(
∂u

∂y
+
∂v

∂x

)]
, (2.11)

3
2
ν

[
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

]
=

1

H2

∂

∂x

[
κ
∂T

∂x
+ κh

∂ν

∂x

]
+

1

H2

∂

∂y

[
κ
∂T

∂y
+ κh

∂ν

∂y

]
− p

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+ 1
2

(
∂u

∂y
+
∂v

∂x

)2

+
λ

2µ

(
∂u

∂x
+
∂v

∂y

)2
]
−D, (2.12)

where

p(ν, T ) = f1(ν)T , µ(ν, T ) = f2(ν)T
1/2,

λ(ν, T ) = (ζ − 2
3
µ), ζ(ν, T ) = f3(ν)T

1/2,

κ(ν, T ) = f4(ν)T
1/2, κh(ν, T ) = f4h(ν)T

3/2,

D(ν, T ) = f5(ν)T
3/2.

 (2.13)

Here H is the dimensionless wall separation H̃/dp.

2.1. Boundary conditions

Unlike in normal fluids, slip is inevitably observed at rigid boundaries in experiments
as well as in computer simulations of granular flows. This results in the generation
of pseudo-thermal energy at the boundaries; energy is also lost due to inelastic
collisions between the particles and the wall. Depending on their relative magnitudes,
the boundary can act either as a source or a sink of pseudo-thermal energy.

Boundary conditions for granular flows have been proposed by Hui et al. (1984)
and Johnson & Jackson (1987) using a heuristic approach, and by Jenkins & Richman
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(1986), Richman (1988), Jenkins (1992) and a number of other studies using a more
rigorous approach based on kinetic theory. The latter class of papers characterize
the wall properties in a detailed manner, while the former give boundary conditions
that depend on only two wall properties, namely the coefficient of restitution for
particle–wall collisions ew and the specularity coefficient φ′. We use the boundary
conditions of Johnson & Jackson in this work. The boundary conditions of Jenkins
& Richman essentially reduce to the same form, with the specularity coefficient given
in terms of the details of the wall structure.

We only write down the boundary conditions in dimensionless form here, referring
to the original work for an elaboration. The first condition is a statement of equality
of the tangential stress in the bulk adjacent to the boundary with the tangential
momentum flux due to particle–wall collisions:

n · Σ · us|us| = H
us
|us| · T

w, (2.14)

where T w is the aforementioned momentum flux, us is the slip velocity and n the
unit normal from the wall directed into the particle assembly. The second equates the
energy flux normal to the wall to the net production of energy at the wall:

n · q = H3 us · T w −H Dw. (2.15)

The tangential momentum flux T w and the dissipation rate per unit area Dw are

T w =
φ′
√

3πνT 1/2us

6νmax

[
1− (ν/νmax)1/3

] , (2.16)

Dw =

√
3πνT 3/2(1− e2

w)

4νmax

[
1− (ν/νmax)1/3

] . (2.17)

3. Base state
The base state whose stability we wish to analyse is steady, fully developed plane

Couette flow,

ν = ν0(y), u =
[
u0(y), 0

]
, T = T 0(y). (3.1)

Here and henceforth, the superscript ‘0’ is used to denote base-state fields. The
continuity equation is identically satisfied, and the momentum and energy balances
take the form

d

dy

(
µ0 du0

dy

)
= 0, (3.2)

dp0

dy
= 0, (3.3)

1

H2

d

dy

(
κ0 dT 0

dy
+ κ0

h

dν0

dy

)
+ µ0

(
du0

dy

)2

−D0 = 0. (3.4)

The boundary conditions (2.14) and (2.15) now reduce to

dT 0

dy
= − f0

4h

f0
4

T 0 dν0

dy
+ f0

6

[
1
3
φ′H3(u0 − 1/2)2 − 1

2
H(1− e2

w)T 0
]
, (3.5)
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du0

dy
= − φ′Hf0

7(u0 − 1/2) (3.6)

at y = 1/2 and

dT 0

dy
= − f0

4h

f0
4

T 0 dν0

dy
− f0

6

[
1
3
φ′H3(u0 + 1/2)2 − 1

2
H(1− e2

w)T 0
]
, (3.7)

du0

dy
= φ′Hf0

7(u0 + 1/2) (3.8)

at y = −1/2. The non-dimensional functions f6 and f7 are listed in table 1. Here and
henceforth, f0

i refers to the function fi evaluated at a solids fraction of ν0.
Equations (3.2)–(3.4) along with boundary conditions (3.5)–(3.8) admit the following

symmetry:

ν0(y) = ν0(−y), u0(y) = −u0(−y), T 0(y) = T 0(−y). (3.9)

Hence, the solution can be obtained by solving (3.2)–(3.4) in the half-domain y ∈
(0, 1/2). The relevant boundary conditions at y = 0 then are

u0 = 0 and
dT 0

dy
= 0. (3.10)

We emphasize here that the above symmetry need not be obeyed by all the solutions
of equations (3.2)–(3.4). Indeed, there are asymmetric solutions, which are simply
steady states of some of the layering instabilities arising from the base states that we
analyse. These asymmetric solutions and other symmetric solutions that arise in plane
Couette flow are discussed in detail in a forthcoming paper by Nott et al. (1998).
They show that all segregated solutions in the adiabatic case arise from layering
instabilities of the uniform shear solution (see below), and that these solutions in turn
are closely related to the solutions of the source and sink cases.

The solution of the governing equations requires the specification of a boundary
condition in addition to (3.5), (3.6) and (3.10). One choice is to specify the normal
stress p0, which is constant across the Couette gap. We have chosen, instead, to impose
the integral constraint

ν =

∫ 1/2

−1/2

ν0(y)dy (3.11)

to specify the mean solids fraction ν and obtain p0 as part of the solution.
If the no-slip condition (u0(1/2) = 1/2) is imposed at the wall in place of (3.6),

and if ew is set to unity, the solution of the above set of equations is that of uniform
shear:

ν0(y) = constant ,
u0(y) = y,

T 0(y) = f2(ν
0)/f5(ν

0).

 (3.12)

Wang et al. have referred to this as the adiabatic case, as there is no energy flux
normal to the walls; pseudo-thermal energy is not produced because there is no slip
and it is not dissipated because grain–wall collisions are perfectly elastic. While this
is an idealization of the conditions at the boundaries, we consider it in order to
delineate the effects of wall properties on stability.

For the general case of slip at the wall, (3.2)–(3.8) have been solved numerically.
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Wang et al.: H = 89

Our results: H = 89
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Figure 1. Base-state profiles for steady fully developed flow with source walls. Parameter values are
ν = 0.35, ep = 0.80 and ew = 0.97. The solid and dashed lines are our results and the dot-dash lines
are the results of Wang et al. (1996). Note the dense plug at the centre in our solution for H = 89.

3.1. Numerical method and results

A fourth-order Runge–Kutta marching scheme was used to obtain the solution for
the base state; two other numerical schemes, namely a second-order finite difference
method and a spectral collocation method, were also used to ascertain the correctness
of the solutions. (We were unable to implement the numerical scheme of Wang et al.
as the details of their linearization procedure are not documented.) Identical results
were obtained with all three methods. Our computational procedure for the Runge–
Kutta method has been documented by Alam (1998). For a given set of parameters
ep, ew and φ′, solutions were obtained for a range of the flow parameters ν and H
by using a numerical continuation procedure. The stability of these base states was
analysed subsequently. We note that the system of equations (3.2)–(3.4) is stiff for
large H because of the factor H−2 multiplying the highest derivative in (3.4).

The values of material parameters used in this study are ep = 0.80 and φ′ = 0.6,
which were the choices of Wang et al. As in their work, we consider stability for three
values of ew , corresponding to the walls being adiabatic (ew = 1, no-slip), and sources
(ew = 0.97) and sinks (ew = 0.5) of pseudo-thermal energy.

Figure 1 shows the profiles of ν0, T 0 and u0 with ew = 0.97 and the average
solids fraction, ν, set to 0.35. For comparison, we have superimposed the base-state
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Figure 2. Base-state profiles for sink walls, ew = 0.50. Other parameters as in figure 1. Note the
dense plugs adjacent to the walls in our solution for H = 89.

profiles of Wang et al. on each panel (we are grateful to them for providing us with
their computed results), represented by the dot-dash lines. It is clear that the grain
temperature is maximum at the walls, indicating that the walls supply pseudo-thermal
energy to the bulk. Since the pressure across the gap must remain constant, the bulk
density is minimum near the walls and maximum at the symmetry axis. Increasing
the Couette gap results in a rise in the density at the symmetry axis, and at H = 89
there is in fact a dense plug at the centre, where the density is almost that of
maximum packing and the shear rate is almost zero. The material is shearing almost
uniformly on either side of the plug. The scenario is reversed if ew is changed to 0.5,
as shown in figure 2. Here energy flows from the bulk material to the walls, leaving
the walls as sinks of energy. Consequently the plugs are now near the walls, and the
sheared layer is at the centre. It is important to note the contrast between our results
and those of Wang et al.; their solutions show relatively minor deviation from the
state of uniform shear, with segregation occurring only in the boundary layers near
the walls. Our conclusion that the base states of Wang et al. are incorrect for the
case of non-adiabatic walls was confirmed by S. Sundaresan & K. Agrawal (private
communication, 1997).

If H is sufficiently small, the whole layer shears almost uniformly with only slight
variation in ν0 across the gap. This is because the diffusion length for the transport
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Figure 3. Base-state profiles for source and sink walls at ν = 0.10, H = 100 and ep = 0.80. The
velocity profiles are almost linear and the variation in solids fraction across the gap is mild in
comparison with figures 1 and 2.

of pseudo-thermal energy varies as the grain diameter dp. Therefore it increases as a
proportion of the Couette gap as H decreases; this has the effect of equalizing the
grain temperature, and consequently the density, across the gap. As the mean solids
fraction decreases, the regime of approximately uniform shear extends to a larger
value of H . This is apparent from figure 3, which shows the profiles of ν0, T 0 and
u0 for a mean solids fraction of 0.1 and a Couette gap of 100. The solid and dashed
lines represent results for walls that are sources and sinks of pseudo-thermal energy,
respectively. In either case, the effect of the walls extends only to the narrow boundary
layers. The thickness of the boundary layer decreases with further rise in H .

It should be clear from the above discussion that there is no analogue of the
uniform shear solution for the cases of source and sink walls, except when the flow
is dilute. The base-state solutions of the latter are composed of dense zones which
suffer little deformation, and relatively dilute shearing zones. The evolution of the
solution branches from the ‘perfect’ case of adiabatic walls to the ‘imperfect’ case
of non-adiabatic walls and a discussion on the nature of the bifurcations for these
cases is the subject of a forthcoming paper by Nott et al. (1998). The imperfection,
in the parlance of bifurcation theory, arises from the boundary conditions: the flux
of pseudo-thermal energy vanishes at the walls and at the centreline for the case of
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adiabatic walls and hence there are solutions that display symmetry (in ν and T )
about the planes y = ±1/2. This symmetry is broken when the walls are not adiabatic.

As mentioned in § 1, we were unable to compute base-state solutions for large H
when the frictional-kinetic model (Johnson & Jackson 1987) for the stress was used.
Specifically, the angle that specifies the directions of the principal frictional stresses
is non-analytic at zero shear rate. Hence numerical solution was not possible when
a dense plug is present, as the shear rate becomes arbitrarily small within the plug.
We were however able to obtain solutions for H small enough that dense plugs were
absent in the flow field.

4. Linear stability analysis
We investigate the stability of steady, fully developed plane Couette flow using the

classical normal mode analysis (Drazin & Reid 1981). The base flow is perturbed
by infinitesimal disturbances, and their time evolution is studied by linearizing the
governing equations about the base state. The perturbations are decomposed into
different Fourier modes and because of the linearity of the governing equations, each
mode may be analysed separately for stability.

4.1. Linearized disturbance equations and boundary conditions

Each of the flow variables is decomposed into its base state and perturbation com-
ponents,

u(x, y, t) = u0(y) + u′(x, y, t), v(x, y, t) = v′(x, y, t),
ν(x, y, t) = ν0(y) + ν ′(x, y, t), T (x, y, t) = T 0(y) + T ′(x, y, t).

}
(4.1)

We have only considered perturbations in the x- and y-directions in this study, but
extending it to three dimensions is straightforward. In this context, it is important to
note that Squire’s theorem does not hold for rapid granular flows; in other words,
we cannot assert that two-dimensional disturbances become unstable sooner than
three-dimensional disturbances as any one of the parameters is varied. Substituting
(4.1) into the equations of motion (2.9)–(2.12) and linearizing about the base state,
we obtain a set of linear equations for the disturbance variables ν ′, u′, v′, and T ′. In
operator form, the linearized disturbance equations and boundary conditions may be
written as

∂X

∂t
= LX,

B1X = 0 at y = 1/2,

B2X = 0 at y = −1/2,

 (4.2)

where X = (ν ′, u′, v′, T ′)T is the disturbance vector. The explicit forms of L and the
boundary operators B1 and B2 are given in the Appendix. Note that the coefficients
of the linear operator L depend on the base-state variables (ν0, u0, T 0) and their
spatial derivatives.

The above set of linearized equations and boundary conditions (4.2) do not depend
on t explicitly, and are therefore amenable to normal mode analysis. We seek solutions
for the solids fraction, velocity and temperature perturbations of the form

X(x, y, t) = X̂(y) eikxx+ωt, (4.3)

where X̂(y) are complex functions of y and kx is the streamwise wavenumber. We
have restricted this study to analysing temporal stability, for which kx is assumed to
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be real and ω is complex. The rate of growth or decay of disturbances is determined
by ωr , the real part of ω, and the imaginary part is the frequency. The flow is stable,
neutrally stable, or unstable accordingly as ωr is negative, equal to zero, or positive,
respectively.

Before proceeding to discuss the solution of the linearized equations, it is useful to
consider the symmetries in the solution. It follows immediately from the symmetry of
the base-state solution (3.9) that (4.2) is invariant under the transformation

x→ −x, y → −y, ω → ω, [ν̂, û, v̂, T̂ ]→ [ν̂,−û,−v̂, T̂ ]. (4.4)

This implies that if eikxx[ν̂, û, v̂, T̂ ](y) is an eigenmode of the stability equations
with eigenvalue ω, then so is e−ikxx[ν̂,−û,−v̂, T̂ ](−y). This is simply an invariance to
rotation of the coordinate frame as there is no preferential direction (such as gravity)
in the problem. Thus, for every forward propagating mode there is a backward
propagating mode with the same growth rate.

4.2. Numerical method for stability analysis

The above set of linearized disturbance equations along with boundary conditions
constitute a well-posed boundary value problem. However, a straightforward dis-
cretization results in a system of equations requiring two artificial boundary condi-
tions for the perturbation in solids fraction (Malik 1990). One can use the momentum
balance in the direction normal to the walls as the artificial boundary conditions
at the boundaries. While this method was successful in computing the spectra for
plane Couette flow of a compressible Newtonian fluid (details in Alam 1998), for the
present problem it always yielded a spurious eigenvalue which did not converge when
the number of collocation points was increased.

The ambiguity inherent in identifying the spurious mode may be avoided altogether
by employing a staggered grid spectral collocation scheme in which the continuity
equation is collocated at points lying between the collocation points for the energy
and momentum equations, and therefore not at the boundaries (Canuto et al. 1988;
Malik 1990). This is accomplished by representing the solids fraction by a polynomial
one degree lower than that for the velocity and grain temperature. At the same
time a set of interpolating matrices must be formed to interpolate between the two
grids. This method does not result in spurious eigenvalues as the spectrum converges
satisfactorily when the number of collocation points is increased. This is the approach
taken in this work, the details of which are documented in Alam (1998).

The momentum and energy balances are collocated at the N Gauss–Lobatto points,
which are the extrema of the Chebyshev polynomial of degree N, and the continuity
equation at its (N−1) zeros. When the discretized stability equations, along with the
boundary conditions are formulated as a matrix eigenvalue problem, they take the
form

AΦ = ωBΦ (4.5)

where ω is the eigenvalue and Φ is the discrete representation of the eigenfunction; A
and B are square matrices of order (4N + 3). Since the boundary conditions do not
contain the eigenvalue ω, B is singular. This singularity is removed through row and
column operations and the order of the matrices reduced to (4N−3). The eigenvalues
of the generalized eigenvalue problem (4.5) are determined with the aid of a complex
QR-algorithm (Golub & van-Loan 1989) which is available in the MATLAB software
package. All the computations reported here were performed on an IBM RS/6000
workstation.



Stability of plane Couette flow of a granular material 111

The accuracy of the numerical scheme was ascertained by increasing the number of
collocation points N until the leading eigenvalues converged to values independent
of N. For the case of adiabatic walls it was found that 20 points are sufficient for
kx = 0 when the Couette gap H is less than 200. For larger values of H , more points
are needed to achieve convergence. When the walls are sources or sinks of energy,
the presence of dense plugs makes the matrix eigenvalue problem ill-conditioned and
hence more collocation points were required to accurately compute the eigenvalues.
In general we find that the larger the value of kxH , the larger is the number of
collocation points required to achieve convergence. A great deal of care was taken
to ensure accurate computation of the eigenvalues. The accuracy and validity of the
numerical scheme was ensured by favourable comparison with analytical results for a
limiting case, as we shall show in § 5, and also with published results for the following
stability problems: (i) incompressible Couette flow (Gallagher & Mercer 1962); (ii)
compressible Couette flow (Duck, Erlebacher & Hussaini 1994); (iii) granular Couette
flow of Wang et al.

Out of (4N − 3) eigenvalues of (4.5), the one with maximum ωr at a given kx is
referred to as the leading eigenvalue, and the supremum of all leading modes (i.e.
maximum of ωr over all kx) as the dominant eigenvalue. For a given set of material and
wall properties, there are two other flow parameters, H and ν. We shall display the
stability results by plotting contours of the dominant eigenvalue in the (H, ν)-plane.

Due to the profound differences between the base-state profiles we have computed
and those of Wang et al., we find that our stability results also differ considerably
from theirs. They report that the properties of the walls have little bearing on the
nature of instabilities. In contrast, we observe that the properties of the walls exert
considerable influence on the nature of instabilities and on the critical Couette gap for
the onset of instability. We shall therefore describe in separate sections stability for
the three sets of wall properties for which base-state solutions have been determined.

5. Adiabatic walls: uniform shear case
We first consider the case of layering disturbances, i.e. disturbances with kx = 0,

as the solution can be obtained analytically. As we shall see further on, a substantial
portion of the unstable region in the (H, ν)-plane is due to layering modes. The
importance of layering modes in unbounded and bounded shear flows was underlined
earlier by Wang et al. We also note that layering structures have been observed by
Tan (1995) in his simulations of plane Couette flow of smooth inelastic disks.

The linear disturbance equations (A 1)–(A 5) with kx = 0 reduce to

ων̂ + ν0 dv̂

dy
= 0, (5.1)

ν0H2
[
ωû+ u0

yv̂
]

= u0
yµ

0
ν

dν̂

dy
+ µ0 d2û

dy2
+ u0

yµ
0
T

dT̂

dy
, (5.2)

ν0H2 ωv̂ = −p0
ν

dν̂

dy
+
(
2µ0 + λ0

) d2v̂

dy2
− p0

T

dT̂

dy
, (5.3)

3
2
ν0 ωT̂ =

1

H2

[
κ0
h

d2

dy2
+H2

(
µ0
νu

0
y

2 −D0
ν

)]
ν̂

+2u0
yµ

0 dû

dy
− p0 dv̂

dy
+

1

H2

[
κ0 d2

dy2
+H2

(
µ0
Tu

0
y

2 −D0
T

)]
T̂ (5.4)
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and the boundary conditions to

û = v̂ =
dT̂

dy
= 0 (5.5)

at y = ±1/2. Equations (5.1)–(5.4) along with boundary conditions (5.5) admit the
following symmetry relationships:

ν̂(y) = ν̂(−y), T̂ (y) = T̂ (−y),

û(y) = −û(−y), v̂(y) = −v̂(−y)

}
(5.6)

and

ν̂(y) = −ν̂(−y), T̂ (y) = −T̂ (−y),

û(y) = û(−y), v̂(y) = v̂(−y).

}
(5.7)

It can then be easily verified that the solution for the disturbance variables is

ν̂(y) = ν̂1 cos kn(y ± 1/2), T̂ (y) = T̂1 cos kn(y ± 1/2),

û(y) = û1 sin kn(y ± 1/2), v̂(y) = v̂1 sin kn(y ± 1/2),

}
(5.8)

where kn = nπ, the mode number n being a positive integer. The even modes
correspond to the first symmetry group (5.6) and the odd modes correspond to the
second (5.7). Note that n = 0 is a trivial mode representing a uniform disturbance.

Substituting (5.8) into (5.1)–(5.4), we obtain an eigenvalue problem, whose disper-
sion relation may be readily obtained as

ω4 + a3ω
3 + a2ω

2 + a1ω + a0 = 0. (5.9)

The coefficients a0–a3 are real, the expressions for which are too cumbersome to
reproduce here but may be found in Alam (1998). Hence, we have three possibilities
for the roots: all real, two complex conjugate pairs, or two real and one complex
conjugate pair. In the limit of large H , an asymptotic analysis (Alam 1998) indicates
that there are two real roots and a complex conjugate pair; our computations reveal
this to be the case for all H . One of the real roots represents the least-stable mode and
thus, as in the case of unbounded granular shear (Alam & Nott 1997), the principle of
exchange of stabilities (Drazin & Reid 1981, p. 12) holds for bounded shear. Therefore,
the locus of neutral stability is given by a0 = 0, which may be simplified to yield

H2 =
N1

N2

k2
n, (5.10)

where

N1 =
1

f0
5

(
f0

4 − f0
1

f0
1ν

f0
4h

)
and N2 =

(
f0

5ν

f0
5

+
f0

2ν

f0
2

)
f0

1

f0
1ν

− 2.

It is clear from (5.10) that higher the mode number n, larger is the critical value of
H for the onset of its instability; therefore the n = 1 mode is the first to become
unstable as H increases at a fixed ν, and the onset of its instability represents the
neutral stability contour in the (H, ν)-plane, shown in figure 4 by the thin solid line
marked ‘0’. One contour of positive growth rate is also shown in figure 4, obtained by
solving (5.9) for ω and taking the maximum of ωr over all values of n. We observe
that the flow is stable to layering modes when the wall separation is sufficiently small;
as H exceeds a critical value Hc, which is a function of ν, the flow becomes unstable.
The flow is always stable to layering modes when ν < 0.15.
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Figure 4. The stability map in the (H, ν)-plane for the adiabatic case with ep = 0.80. The numbers
against the contours are the growth rates. The thin solid contours represent layering modes (kx = 0)
and the thick solid and dashed contours represent stationary and travelling waves, respectively. The
hatched area is a zone of instability for dilute flows.

The contours of constant growth rate for layering modes in figure 4 form sharp
cusps, which can be understood if we consider the variation of the growth rates of
individual modes with H , shown in figure 5. The circles are the results of our spectral
collocation scheme (with 20 collocation points) and the solid lines are the solution
of (5.9); eigenvalues obtained from both methods agree to better than eight decimal
places, substantiating the accuracy of our numerical computation. For every mode,
the growth rate starts with a negative value, increases with H , reaches a maximum
positive value and thereafter decays to zero. At some values of H , adjacent modes
cross each other, beyond which the higher-order mode becomes dominant until the
next crossover. Since ωi = 0 for all layering modes, the crossovers imply degeneracy
in the spectrum. (As we shall see later, degeneracy is also present for non-layering
disturbances for all the sets of wall properties considered in this study.) The cusps
in the growth rate contours of layering modes in figure 4 are a result of the transfer
of dominance from one mode to the next. Note that the growth rate of all modes
decreases as H becomes very large. This may be explained if we consider the limit
H →∞, for which the dispersion relation may be further simplified to yield

ω3

(
ω +

2

3ν0
f0

5T
01/2
)

= 0. (5.11)

Three roots of (5.11) are identically zero and the fourth is real and negative. Therefore,
every layering mode (with the exception of n = 0) becomes neutrally stable in the
limit H →∞.
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Figure 5. Variation of the growth rate of individual layering modes (kx = 0) with H at ν = 0.20.
Other parameters are as in figure 4.

The Couette gap below which the flow is stable to layering disturbances for all ν
(i.e. the minimum of Hc over all ν) can be obtained from (5.10) by setting ∂H/∂ν to
zero, which may be simplified to yield

1

N1

(
dN1

dν0

)
− 1

N2

(
dN2

dν0

)
= 0. (5.12)

This yields the critical solids fraction νc and the critical wall separation Hc may then
be calculated from (5.10). For ep = 0.80, we obtain Hc = 13.27 and νc = 0.3211 while
ep = 0.99 gives Hc = 78.07 and νc = 0.3195. Note that νc is a weak function of ep
due to the weak dependence of (5.12) on ep; the critical Couette gap is, however, a
strong function of ep, Hc ∼ (1− e2

p)
−1/2. It is also noteworthy that as ep → 1, Hc →∞.

In other words, the critical wall separation becomes unbounded in this limit, clearly
illustrating the inelastic nature of the instability. Thus, layering instability is driven
by the inelasticity of grain collisions, as is the case for unbounded shear flow (Alam
& Nott 1997).

It is clear from figure 4 that the flow is stable to layering modes in the dilute limit.
This is easily shown by determining the minima of the neutral stability contour, i.e.
by setting ∂ν/∂H = 0. This is equivalent to setting N2 to zero, which is at ν ≈ 0.156
when ep = 0.8; this does not vary appreciably with ep due to the weak dependence
of N2 on ep. Thus the flow is stable to layering disturbances when the mean solids
fraction is below 0.156.

Coming to the relation between the unstable modes of bounded and unbounded
Couette flow, for a given H all layering modes of the bounded case are compatible
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with those of the unbounded case. The unbounded case may be recovered exactly in
the limit H → ∞ such that kn/H = ky . The transverse wavenumber ky (scaled by the
particle diameter) can now take any value, unlike the discrete modes in bounded flow.
Therefore, the neutral stability contour for unbounded granular shear flow is given
by

k2
y =

N2

N1

(5.13)

in the (ν0, ky)-plane.

5.1. Numerical results for all wavenumbers

The complete stability diagram for layering (kx = 0) and non-layering (kx 6= 0)
disturbances is shown in figure 4 for the case of adiabatic walls, for a particle
coefficient of restitution of 0.80. Shown in the figure are contours of constant growth
rate; the thin solid contours represent layering modes and the thick solid and dashed
contours represent stationary and travelling waves, respectively. The hatched area in
the lower left-hand corner of figure 4 represents an additional instability in the dilute
limit (ν → 0), which we discuss in § 5.1.1. As in the case of layering disturbances,
the flow is also stable to stationary and travelling waves when the gap width H is
small; the value of H at which stationary or travelling wave instabilities begin to
appear is considerably larger than that for layering instability. Note also that below
the minimum ν (≈ 0.156) for layering instability, the flow can become unstable to
non-layering disturbances. The neutral stability contour for small ν is determined by
disturbances in the form of stationary waves; it is almost horizontal with increasing
H , suggesting that this stationary instability is not present as ν → 0. Travelling wave
instabilities begin to appear at larger H than layering or stationary instabilities and
therefore do not determine the neutral stability contour. In regions of the (H, ν)-plane
where all three modes are unstable, stationary modes have the largest growth rate,
followed by travelling and layering modes respectively.

To consider the modal structure in some detail we focus on the point (H, ν) = (100,
0.20) in figure 4, indicated by the symbol ⊕, where the flow is unstable to layering,
stationary and travelling wave disturbances. At this point, the variation of the growth
rate of the leading mode with kx is shown by the solid line in figure 6(a) and that of
the phase velocity, defined as

cph = −ωi
kx
,

is shown by the dashed line; a positive cph indicates a forward propagating wave and a
negative cph a backward propagating wave. The leading mode with a positive growth
rate in the long-wave limit (see inset in figure 6a) falls rapidly with increasing kx and
soon becomes stable. At larger kx, two distinct hills protrude above the zero growth
rate axis. The first represents the dominant instability due to stationary waves which
Wang et al. reported; the abrupt change in cph on either side of this hill indicates
transition between travelling and stationary waves. At even smaller wavelengths is the
second hill, characterized by a non-zero phase velocity. We note that the dominant
travelling wave instability has a growth rate smaller than that of the stationary wave
but much larger than that of the long-wave instabilities.

The origin of unstable travelling waves can be traced if we consider the variation of
the first few eigenvalues with kx, shown in figure 6(b). The oval structures labelled SW1

and SW2 are stationary waves that arise when a complex conjugate pair of eigenvalues
becomes purely real. The eigenvalues remain real for a range of kx, then coalesce again
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Figure 6. (a) Variation of the growth rate of the leading mode, ωl
r , (solid line) and its phase velocity,

cph, (dashed line) with kx. The inset shows the long-wave variation of ωl
r . (b) Variation of the growth

rate of the first few modes with kx. Parameter values are H = 100, ν = 0.20 and ep = 0.80.

to form a complex conjugate pair with further rise in kx. Indeed we can observe several
such instances of stationary waves arising out of travelling waves if we follow the
eigenvalues over a larger range of kx. While only the first stationary mode is unstable
for the parameter set considered here, as H increases the other stationary modes SW2,
SW3 etc. rise and subsequently become unstable. It is clear that the unstable travelling
wave arises from the dominant stationary wave in the sense that the two stationary
waves of SW1 coalesce to form two oppositely propagating travelling waves which are
unstable for a range of kx, beyond which they propagate as stable modes. These trav-
elling waves were not reported by Wang et al.; for example, the adiabatic case of their
figure 17 (ν = 0.24, H = 89) should have shown a second hill representing unstable
travelling waves at kx ≈ 1, as is evident from figure 4 here. The ‘kink’, in the growth
rate of the leading mode, indicated by the letter P in the figures, is a result of crossing
of modes. For some values of the mean density (such as ν ≈ 0.182), the crossover is a
degeneracy as the imaginary parts of the eigenvalues are also equal. In this regard, the
points in figure 6(b) where travelling waves coalesce to form the stationary waves and
vice versa are also where the spectrum is degenerate. Degeneracy in the eigenvalue
spectra leads to short-time disturbance growth (∼ teωt), providing a viable mechanism
for transition even if the flow is asymptotically stable. It is a common phenomenon in
hydrodynamic stability (Craik 1985); for example, plane Couette flow of a Newtonian
fluid supports stable degenerate modes (Gustavsson & Hultgren 1980).
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To establish the link between layering and non-layering instabilities, we have
magnified the region near kx = 0 of figure 6(b) and shown in figure 7 the variation
of the first few eigenvalues with kx. Those that start as oscillatory layering modes at
kx = 0 are labelled S1, S2 etc.; the others start as non-oscillatory layering modes. The
inset in figure 7(a) shows that the first five modes at kx = 0 are unstable and that
there is a neutrally stable mode c2, which is the n = 0 mode of (5.8) representing a
uniform disturbance. Comparison with figure 5 shows that the modes a1, a2, b1, b2 and
c1 correspond to n = 4, 3, 2, 5 and 1, respectively, in (5.8). The modes a1 and a2 are
non-oscillatory (ωi = 0) at kx = 0, and remain so until they coalesce at kx ≈ 0.00002
to form a complex conjugate pair a12 representing travelling waves. Similarly, other
non-oscillatory modes also coalesce as they evolve with kx. The mode S1 originates
from the first pair of oscillatory modes, i.e. n = 1 of (5.9), and S2 originates from the
n = 2 mode. We note in figure 7(b) that the phase velocity of these modes diverges
as kx → 0; they resemble some inviscid modes of compressible Couette flows (cf.
figure 8 of Duck et al. 1994). Further continuation in kx shows that S1 splits into two
stationary waves at kx ≈ 0.47, the first oval structure (SW1) of figure 6(b). The second
oval structure (SW2) of figure 6(b) bifurcates from the S2-branch.

The above discussion clearly establishes the link between the non-layering and
layering instabilities. The non-oscillatory layering modes always pair up to form
travelling waves at small kx, which may be unstable depending on the values of ν
and H . On the other hand, every pair of oscillatory layering modes evolves with kx
initially as travelling waves, and eventually transforms into two stationary waves; with
further increase in kx they pair up again to form travelling waves. More importantly,
it is the first pair of oscillatory layering modes (S1) that evolves with kx to yield the
dominant stationary wave and travelling wave instabilities of figure 4. Thus, though
the oscillatory layering modes are always stable, they are the progenitors of the
dominant non-layering instabilities.

We now proceed to look at the eigenfunctions of the unstable disturbances. For this,
we consider two modes of figure 6(a): the dominant stationary wave and the dominant
travelling wave. Figure 8(a) shows the disturbance in the solids fraction for the
dominant stationary wave on a grey scale, with black representing maximum density
and white minimum density; contours of constant solids fraction are superimposed on
the same figure. Note that the x-coordinate has been scaled by twice the streamwise
wavelength. The eigenfunction closely resembles the stationary mode eigenfunction
of Wang et al. (see their figure 13), since the dominant stationary mode we observe
is precisely what they have reported. Figure 8(b) shows the disturbance in the solids
fraction for the dominant travelling wave. It is interesting to note that the phase
velocity of this mode is 0.105; thus the clusters near the walls convect considerably
slower than the local mean flow. Here we should recall that there are other travelling
instabilities for the same parameter set (see inset of figure 7a), although of much
higher wavelengths than the one shown in figure 8(b).

The description of the modal behaviour thus far has been confined to a single
point (⊕) in the (H, ν)-plane. To look at the effect of changing H , we have shown
some contours of constant ωr in the (H, kx)-plane in figure 9 with ν = 0.30. The
line emerging from near the origin, labelled ‘LW ’, is the neutral stability contour
for long waves (kx � 1), below which is the unstable zone for these modes. The
curved sickle-like structures labelled SW , TW1 etc. are boundaries of the zones of
instability for stationary and travelling waves. In a plot such as in figure 6(a), these
zones are the ‘hills’ protruding above the ωr = 0 line. When the Couette gap is
large, there is a contiguous range of kx within which the instability passes on from
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layering to stationary to travelling waves. For the mean density assumed here, the
dominant travelling wave instability, labelled TW1 in the figure, appears only when
the dimensionless gap is more than 100 and the stationary wave appears when it
is more than 48. Inspecting the contour values, we find that the growth rate of the
dominant travelling wave increases with H , reaches a maximum at some value of H ,
and thereafter decays. The growth rate of the dominant stationary mode also shows
a similar dependence on H .

We find that the effect of ep on the non-layering instabilities is similar to that
on layering instabilities (details in Alam 1998). Decreasing ep (i.e. increasing grain
inelasticity) enhances the growth rate of all instabilities, barring those in the dilute
limit (see below). Decreasing ep also reduces the critical value of H for the inception
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of stationary and travelling wave instabilities, i.e. the zone of instability in the
(H, ν)-plane increases in size with increasing grain inelasticity. Thus, all the observed
instabilities are driven by the inelastic nature of particle collisions.

5.1.1. The dilute limit (ν → 0)

We now describe in some detail the instabilities we have observed for dilute flows,
corresponding to the hatched area in figure 4. They appear to be strongest in the
quasi-elastic limit 1− ep � 1, but are absent when collisions are perfectly elastic. An
expanded view of the unstable zone in the lower left-hand corner of figure 4 is shown
in figure 10. The flow is unstable to the left of the neutral stability contour. The range
of H for which the flow is unstable decreases with rise in ν. The range of unstable
H (at a given ν) increases as ep rises from 0.8 to 0.99. The phase velocity of these
instabilities is always zero, indicating that they are stationary waves.

Figure 11(a) shows the variation of ωl
r with wavenumber for four values of ep at

(H, ν) = (50, 0.01). It is clear that this instability originates as a neutral mode at
kx = 0, specifically the mode corresponding to n = 0 of (5.8) representing a uniform
disturbance. While the leading mode is always stable when ep = 0.80, there is a range
of kx for which it is unstable when ep is set to 0.99; in this range the growth rate
increases with kx, reaches a maximum at an intermediate value kdx, and thereafter
decreases monotonically. Further increase in ep does not change the overall shape
of the growth rate curve, but the peak decreases sharply and so does kdx. The peak
of each curve in figure 11(a) is the dominant eigenvalue, whose variation with ep is
shown in figure 11(b) for the same parameter set. The dashed line in the figure shows
the variation of kdx. We note that the flow is stable for ep below 0.88 and unstable
when it exceeds this value; ωd reaches a maximum at ep ≈ 0.98 and diminishes with
further rise in ep. The fact that kdx also approaches zero in the elastic limit suggests that
the dominant mode tends to a neutrally stable layering mode in the perfectly elastic
limit. That this instability is absent for ep below 0.88 contrasts with the instabilities
described in § 5.1, which become stronger with increasing grain inelasticity.

The eigenfunction for the solids fraction of the dominant mode is shown in figure 12
on a grey scale for ν = 0.01, H = 50 and ep = 0.99; the streamwise wavenumber for
this disturbance is 0.22. Note that this is a stationary pattern. Here, as in figure 8,
the x-axis should be stretched by a factor of 4π/kx to view the true aspect of the
disturbance. It appears that the alternating bands of high and low concentrations are
aligned almost perpendicular to the direction of the flow.

6. Walls acting as energy sources
We recall that the base state for this case has a dense non-deforming zone around the

mid-plane when the Couette gap is sufficiently large. As the Couette gap H increases,
the solids fraction in the plug approaches that of maximum packing. This leads to the
matrix B in (4.5) becoming increasingly ill-conditioned and requires a large number of
collocation points for accurate computation of the eigenvalues, therefore demanding
more computational time. This is the reason for the limited range of H for which sta-
bility results are given in this section. The considerable difference in the base state from
that for adiabatic boundaries leads to stability characteristics that differ significantly
from the adiabatic case. We find that the flow becomes stable to layering disturbances
if H is sufficiently large, but remains unstable to long-wave disturbances. The strong
stationary wave instabilities that were prominent in the adiabatic case are absent here
when ν exceeds a threshold of roughly 0.22; instead, there is a travelling wave insta-
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The labels LW , SW and TW denote long-wave, stationary wave and travelling wave instabilities
respectively.
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Figure 11. (a) The growth rate of the leading mode, ωl
r , as a function of kx for four values of ep at

H = 50 and ν = 0.01. (b) The growth rate of the dominant mode and the associated wavenumber
(the maxima of the curves in a) as a function of ep.

bility which is the dominant mode at moderate values of ν and large H . The presence
of a plug in the base state also modifies the eigenfunctions of the leading modes.

Before going into the stability map on the (H, ν)-plane, it is useful to consider the
variation of the leading mode with kx at a representative point on the plane. Figure 13
shows the variation with kx of the growth rate and the phase velocity of the leading
mode for (H, ν) = (50, 0.30). The inset gives the variation in the long-wave limit.
There are two ‘hills’ rising above the baseline of zero growth rate and one that stays
in the stable half-plane. In the first hill, ωl

r starts off positive at kx = 0 and becomes
negative within a kx of 0.02; the modes in this range of kx are henceforth referred
to as long-wave modes. From the phase velocities in figure 13, it is clear that they
are stationary waves. The dominant mode is at the maximum of the second hill, in
the form of a travelling wave. The modes in the last hill are also travelling waves,
but remain stable for this parameter set. The discontinuities in the phase velocity in
figure 13 reflect mode switching, or transfer of dominance from one eigenvalue to
another.

Having described the variation of the leading mode with kx for one particular point
in the (H, ν)-plane, it is worthwhile to point out qualitative changes in the features
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waves.

with change in H or ν. When H is small or ν is large, the dominant long-wave
instability occurs not at a finite wavenumber but is a layering mode, as was always
the case in the adiabatic case. The modes on the second hill, which are travelling
waves in figure 13, become stationary waves for small mean densities; sometimes the
hill starts with stationary waves and turns into travelling waves. The third hill rises
above the baseline as H increases, although the dominant mode is always the mode
corresponding to the peak of the second hill. At large H even more hills of travelling
waves rise above the baseline.

Contours of constant growth rate in the (H, ν)-plane for all the modes are given
in figure 14. It is significant that the dilute flow instability that we observed in the
adiabatic case (figure 10) is absent here. The overall neutral stability contour in this
figure originates from layering modes for ν above 0.18, from long waves for a very
short span of ν below 0.18 and stationary waves for even lower mean densities. While
the travelling wave instability does not affect the neutral stability contour, it is the
fastest growing mode in most of the region where it is unstable. As in the adiabatic
case, the flow is stable when either the mean density or the Couette gap is sufficiently
small. It is interesting to note that the upper envelope of stationary instability appears
to fall as H increases, suggesting that these modes remain stable beyond a mean solids
fraction of roughly 0.22. This contrasts with the adiabatic case for which the upper
envelope rises to cover dense flows as H increases (cf. figure 4).

We now pause to consider the layering instabilities in some detail and point out the
differences with those for the case of adiabatic walls. Looking at the lower envelope
of the region of instability to layering modes, we find that this instability occurs only
for a finite range of H; the flow is stable when the Couette gap is large. This is
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Figure 15. (a) The growth rate of first three non-oscillatory layering modes (kx = 0) as a function
of H . Parameter values as in figure 13. (b) Eigenfunctions for the solids fraction disturbance at
(H, ν) = (50, 0.3), i.e. the point ⊕ in figure 14.

clearly illustrated in figure 15(a) which shows the variation of the growth rates of the
first three layering modes with H at ν = 0.30. These are non-oscillatory modes; the
oscillatory modes here are always damped. The first mode becomes stable beyond
H ≈ 67, and the rest are always stable. More importantly, there are no mode crossings
with increase in H , unlike in the adiabatic case where higher-order modes successively
take over as the leading mode after constant intervals of H (cf. figure 5). The mode
numbering in figure 15(a) corresponds to the number of zeros in the eigenfunctions
for ν̂(y), shown in figure 15(b); ν̂(y) has one zero for the first mode, two zeros for the
second mode and so on. Thus, there is clearly a one to one correspondence between
these modes and the modes n = 1,2 etc. for the adiabatic case (5.8), showing that
every layering mode of the source case can be identified with a layering mode of
the adiabatic case, but the form of the eigenfunction is modulated by the boundary
condition.

The eigenfunctions for the solids fraction disturbance of the dominant long wave
and the dominant travelling wave modes in figure 13 are shown in figure 16. The
pattern in figure 16(a) is stationary. There are two rows of clusters, placed symmet-
rically about the mid-plane at y ≈ ±0.15. The pattern shown here does not reflect
the true aspect of the disturbance as it has been compressed by a factor of 1256 in
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Figure 16. The solids fraction disturbance for (a) the dominant long-wave (kx = 0.01) and (b) the
dominant travelling wave (kx = 2.56) instabilities in figure 13.

the x-direction. The travelling wave pattern in figure 16(b) propagates in the positive
x-direction; there is also a backward propagating wave with the same growth rate for
which the density pattern is a 180◦-rotation of that given here. The phase velocity of
these travelling waves is 0.03 and the base-state velocity at the centre of the clusters
is roughly the same. Therefore, the clusters do convect with the local mean velocity.

That the instabilities are driven by the inelasticity of grain collisions may be
ascertained by looking at the variation of ωl

r with kx for different values of ep. For
example, on increasing ep to 0.9 (with other parameters as in figure 13) the travelling
waves become stable and the fastest growing disturbance is a layering mode. As ep is
reduced, the dominant long-wave and travelling wave instabilities become stronger.
The details of these computations are documented in Alam (1998).
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7. Walls acting as energy sinks
We now consider stability for the case when the walls act as sinks of pseudo-thermal

energy. We recall from § 3.1 that the base state for this case has dense non-deforming
plugs near the walls, confining the shearing zone to around the symmetry axis. Here
too the computational difficulty in determining eigenvalues when the plugs are dense
has limited the range of H for which we have determined stability. We show below
that while there are some similarities in the stability characteristics with those for
adiabatic and source walls, there also are significant differences.

Figure 17 shows the stability map in the (H, ν)-plane. The dilute flow instability
that was present in the case of adiabatic walls is absent here. There is now a long-wave
stationary instability which is dominant for dense flows and forms the upper envelope
of the unstable region. The long-wave modes which are present at low-to-moderate
mean density are travelling instabilities. It is evident that the growth rates in figure 17
are in general much smaller than in the source case. The strong stationary wave
instability that was prominent in the adiabatic and source cases is also present here,
but only at larger H . The hatched region near the top right-hand corner is stable to
all disturbances.

The variation of the leading modes with kx for the points ⊕ and 	 in figure 17
are shown in figure 18. The growth rate at 	 has been reduced by a factor of 20
to accommodate it in this plot. The leading mode remains stable for kx above 0.05
at these points. In both cases, the leading mode originates from an unstable non-
oscillatory layering mode, remains a stationary wave for a range of kx, and thereafter
becomes a travelling wave. The dominant modes at the points ⊕ and 	 in figure 17
are travelling and stationary waves, respectively.
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Figure 18. The variation of (a) the growth rate of the leading mode and (b) its phase velocity with
wavenumber kx for the points ⊕ (solid line, ν = 0.3, H = 50) and 	 (dashed line, ν = 0.55, H = 50)
in figure 17. The inset in each panel shows the variation of the former for very small kx.

Figure 19(a) shows the eigenfunction for the solids fraction for the dominant mode
at the point ⊕ in figure 17, a travelling wave with phase velocity cph ≈ 0.488. The
maximum density fluctuation occurs at y ∼ 0.35 where the base-state velocity is
about 0.41. Therefore, the clusters convect slightly faster than the local mean flow.
The structure of the dominant disturbance is very different when ν is raised to 0.55
(the point 	 in figure 17), as illustrated in figure 19(b). The clusters are now centred on
the mid-plane and the disturbance is stationary. In contrast, the dominant instability
for the case of source walls at the same ν and H is a layering mode with maximum
density fluctuation roughly halfway from the centreline to the wall. The eigenfunctions
for the strong stationary instability corresponding to the thick lines in figure 17 are
quite similar to those of the adiabatic case (figure 8a). This is not surprising, since
the base state for dilute flows is relatively insensitive to the properties of the walls.

Lastly, we consider stability when the Couette gap is large to investigate if any new
qualitative features arise that were not present for the parameter range in figure 17.
We show the variation of the leading mode with kx in figure 20 for (H, ν) = (145, 0.3).
It required 225 collocation points to obtain eigenvalues with the desired accuracy
for this parameter set. There are now three hills above the baseline of zero growth
rate (this figure does not resolve the long-wave modes such as in figure 18): the first
two hills are the travelling waves that are also present at a smaller H in figure 18,



Stability of plane Couette flow of a granular material 129

–0.5

0.5

0 0.5

y 0

x/2λx

1.0

(b)

–0.5

0.5

0 0.5

y 0

1.0

(a)

Figure 19. The solids fraction disturbance of the dominant modes at the points ⊕ and 	 in
figure 17. (a) ν = 0.30, H = 50, kx = 0.015; (b) ν = 0.55, H = 50, kx = 0.013. The patterns must be
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and the third is the strong stationary wave instability, represented by the thick solid
contours in figure 17. Thus the region in the (H ,ν)-plane where these stationary
waves are unstable grows to encompass dense flows as H increases, unlike the case
of source walls for which there is an upper bound in ν for this instability. As in
the case of adiabatic walls, the dominant stationary wave originates from the first
pair of oscillatory layering modes. The eigenfunctions for the solids fraction for the
disturbance corresponding to the second and third peaks of figure 20 are shown in
figures 21(a) and 21(b), respectively. The significant difference between the patterns
in figures 21(a) and 19(a) is that the clusters in the former are more compact and lie
some distance from the walls. The distance they are displaced is in fact the thickness
of the dense plugs in the base state. This is also the case for the stationary wave
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in figure 18. The solid and dashed lines represent the growth rate and phase velocity, respectively.
Note the presence of strong stationary wave instabilities.

pattern in figure 21(b), which may be compared with that of the adiabatic case in
figure 8(a); but for the compression of the clusters and their displacement from the
walls, the pattern is similar to that in the adiabatic case.

8. Summary and conclusions
The linear stability of plane Couette flow of a granular material was considered,

using a kinetic-theory-based model for the rheology. Our original idea of including
the stress arising from grain friction was abandoned due to difficulties encountered
in determining the base state; when the Couette gap is sufficiently large, there are
dense slowly deforming regions and the frictional stress is indeterminate. Stability was
determined for three illustrative sets of wall properties, corresponding to the walls
being perfectly adiabatic, and acting as sources and sinks of fluctuational energy.
For a given set of material and wall properties, stability is a function of the Couette
gap H and the mean solids fraction ν. For all three cases, the flow is stable if H is
sufficiently small. The flow is also stable for all H if ν is sufficiently small, with the
exception of the case of adiabatic walls when there is a low-density instability.

The dominant instability may be one of three types: (i) a slowly growing pattern of
alternating layers of higher and lower density parallel to the walls (layering modes),
(ii) a more complicated relatively fast growing stationary pattern with variation in
the flow direction and (iii) a similar pattern travelling in the direction of mean flow
which grows rapidly when the walls are adiabatic or sources of energy and relatively
slowly when they are energy sinks. In the second and third types above, clusters of
particles are evident. The clusters in the travelling wave instability do not necessarily
convect with the local mean velocity. For the case of adiabatic walls, there is another
instability at low densities; the instability pattern is that of a stationary density wave
in the streamwise direction with almost no variation in the gradient direction.
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Figure 21. The solids fraction disturbance of the dominant modes in figure 20. Panel (a) is the
(forward propagating) travelling instability corresponding to the second peak in the growth rate of
figure 20 and panel (b) is the strong stationary wave instability corresponding to the third peak.
The arrows in each panel indicate the locations where the base-state solids fraction is 0.649.

This investigation follows the recent paper of Wang et al. (1996) on the same topic.
However, our findings differ significantly from theirs on the base-state solutions and
consequently, on the stability characteristics when the walls act as sources or sinks
of fluctuational energy. They did not observe the dense plugs that we find to be
characteristic of plane Couette flow when the gap is sufficiently large. This appears
to be due to inaccuracies in the numerical solution procedure adopted by them. As
a result, the contours of neutral stability as well as the details of the unstable modes
that we have computed substantially differ from those that they have reported. In
the case of adiabatic walls, when the base state is devoid of dense plugs, Wang et al.
appear to have missed the strong travelling wave instabilities and the dilute flow
stationary instabilities (cf. § 5.1.1) that we have observed.
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Instability is essentially caused by the inelasticity of grain collisions; the growth
rate of all instabilities decreases as the coefficient of restitution ep approaches unity.
The compressibility of the granular medium is also an essential feature, as the primary
manifestation of instability is the formation of clusters or alternating layers of high
and low density. We note in this regard that in our earlier paper on the stability
of unbounded shear (Alam & Nott 1997) we have demonstrated that there is no
instability if the granular medium is assumed to be incompressible. The dependence
of the transport properties of the medium on the grain temperature is also necessary
for the observed instabilities, as it provides the coupling between the energy and
momentum balances.

The properties of the bounding walls strongly determine the nature of the base
states, and the onset and nature of instabilities. However, we must emphasize here that
the differences in stability between the adiabatic, source and sink cases are primarily
due to the differences in their base states. If, for instance, the uniform-shear base state
is analysed in all three cases (it will, of course, not satisfy boundary conditions (3.5)–
(3.8) for source and sink walls), the stability characteristics differ only marginally.
Indeed, there are steady fully developed solutions for the adiabatic case that closely
resemble the base-state solutions of the source and sink cases; these are simply steady
states of the layering mode instabilities that arise from the uniform shear solution.
These segregated solutions for the adiabatic case, and their corresponding solutions in
the source and sink cases are analysed in a forthcoming paper by Nott et al. (1998).
For instance, the mode corresponding to n = 2 of (5.8) leads to two steady solutions
for each set of H and ν, one resembling the base state of the source case and the other
resembling the base state of the sink case. Consequently, the stability characteristics
of these solutions for the adiabatic case are very similar to that of the source and
sink cases reported in §§ 6 and 7 of this paper.

A comment on the generality of our findings is necessary, as we have chosen one of
several available constitutive models, and the question arises as to whether the results
we have presented are specific to this model or whether they are of general import.
The model of Lun et al. that we have used accounts for the perturbation from the
Maxwellian velocity distribution function up to terms that are linear in the gradients
of the hydrodynamic variables. Jenkins & Richman (1985) have shown that any
systematic derivation that stops at linear corrections will yield identical constitutive
relations. The results we have presented here are therefore general, if the gradients of
the hydrodynamic fields and the inelasticity of grain collisions are small. One feature
that these models do not capture is the anisotropy of the velocity distribution function,
observed in computer simulations of Walton & Braun (1986), and derived in the kinetic
theories of Jenkins & Richman (1988) and Sela & Goldhirsch (1998). However the
analysis of Sela & Goldhirsch, which carries the expansion of the velocity distribution
function up to Burnett order, clearly shows that anisotropy (and consequently normal
stress differences) arises from terms of Burnett order. While it is certainly of interest
to conduct a stability analysis using this higher-order model, it is a separate study in
itself and we leave it to a future investigation. In this context, we note that the value
0.8 assigned to ep in this study may perhaps not be close enough to unity to satisfy the
assumption of small inelasticity in the model of Lun et al. (we had used it to enable
direct comparison with the results of Wang et al.). This is however not a serious issue,
as our qualitative findings apply to a range of ep that is close enough to unity.

As noted in our earlier paper (Alam & Nott 1997), a linear stability analysis of
unbounded shear predicts that the only instabilities that arise are of the layering
kind. The microstructures observed by Hopkins & Louge (1991) in their simulations
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of unbounded shear of smooth inelastic disks are however not of this type, but are
finite sized clusters whose principal axis is inclined from the flow direction. While the
use of periodic boundaries in simulations constrains the wavelengths of disturbances
to be less than the size of the periodic cell, the singular limit of infinite wavelength (no
variation in the streamwise direction) ought to be captured in simulations. Indeed,
structures remarkably similar to layering modes have been reported by Tan (1995)
in simulations of plane Couette flow of inelastic disks (with periodic boundaries
in the flow direction). Possible reasons for why layering structures were absent in
the simulations of Hopkins & Louge are nonlinear or finite-amplitude effects and
unavoidable numerical error, but we are unable to speculate further.

It is well known that when dense granular materials are sheared, often deformation
occurs only in thin shear layers while most of the material remains undeformed (see,
for example, Schoefield & Wroth 1958, p. 223). It is interesting that a model which
is expected to hold only in the regime of rapid flow predicts this type of layering
instability with alternating layers of high and low density. Even the solutions for the
base state of steady fully developed plane Couette flow indicate that the flow domain
is divided into shearing and dense non-shearing (plug) zones, except in the singular
case of there being no-slip and no energy flux at the walls. This suggests that even
when the mean density is well within that of loose random packing (i.e. when grains
are not in sustained contact with their neighbours), there are regions in the flowing
material where the density is high enough (and the deformation slow enough) that
the effects of grain friction may not be ignored. Although this study may not be of
immediate consequence to practical problems in the shear of granular materials where
gravitational compaction and grain friction may be important, we hope that it is a
step in the right direction. In this regard, it would be useful to extend this analysis
by including the effects of gravity and friction.

We wish to thank Professor Vijay H. Arakeri for his encouragement and suggestions
during the course of this work. The paper was written when M.A. was supported
by a Project Assistantship by the Jawaharlal Nehru Centre for Advanced Scientific
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Appendix. Linearized stability equations and boundary conditions
The linearized equations for the disturbance variables ν ′, u′, v′, and T ′ are
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∂x
+ u0

yv
′
]

=

[
−p0

ν

∂
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]
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(A 2)
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ν0H2
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T ′, (A 3)
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Here the subscripts ν, T and y indicate partial derivatives and the superscript 0
stands for quantities evaluated at the base state conditions.

The boundary conditions (2.14)–(2.15) are linearized to yield

[
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)]
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at y = 1/2 and[
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(A 6)

at y = −1/2. The condition v′ = 0 is a statement of impenetrability of the walls.
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